Numerical simulation in machinised tunnelling

Günther Meschke
Institute for Structural Mechanics
Ruhr University Bochum
3D Simulations in TBM tunnelling

- Reliable prognoses of settlements (in particular in sensitive urban areas), stresses in tunnel lining etc.
- Insight into interacting mechanisms between individual components
- Sensitivity studies: Evaluation of influence of selected parameters
- Investigation of difficult soil conditions, identification of critical situations, failure of tunnel face
- Basis for optimization of design of tunnel excavation

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Numerical model</th>
<th>Numerical Analyses</th>
<th>Aspects of optimization</th>
<th>Research perspectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
European Research Initiative TUNCONSTRUCT

SP 1
Design

SP 2
Innovative Technologies

SP 3
Innovative Processes

SP 4
Maintenance & Repair

UNDERGROUND CONSTRUCTION

INFORMATION

Automated steering

New cementitious materials

Product model Life Cycle Cost model

(UCIS)
European Research Initiative TUNCONSTRUCT

Subproject 1: Design of Underground Construction

SP1
Design of underground structures

Günther Meschke (RUB-ISM)

16 partners
3 Companies
6 SME
7 HE

WP 1.1: Virtual underground construction
George Exadaktylos (TUC)

WP 1.2: Expert knowledge basis
Felix Amberg (Amberg)

WP 1.3: Design support system
Wulf Schubert (TUG-IRMT)

WP 1.4: Integrated Optimization Platform
Dietrich Hartmann (RUB-ICE)

- Amberg (CH)
- Bouygues (F)
- C3M (SL)
- CIMNE (ES)
- Geodata (A)
- Maidl & Maidl (Ger)
- NCC (S)
- Univ. Bochum (Ger)
- TNO (NL)
- TU Crete (GR)
- TU Graz (A)
- TU Vienna (A)
- Univ. Barcelona (ES)
- Züblin (Ger)
Integrated Concept for Numerical Simulation in Tunnelling
Construction process

Simulation

Model components

Numerical model

Motivation

Fully & partially saturated soil
Tail void grouting
Face support
TBM steering
Simulation procedure

Tail void grouting
Lining
Cutting face
Tail void grouting
Hydraulic jacks

Back-up trailer
hydraulic jacks
TBM
Soil
Lining
TBM considering conicity and overcut
Construction process

Simulation

Model components

- Fully & partially saturated soil
- Tail void grouting
- Face support
- TBM steering
- Simulation procedure

Construction process:
- Tail void grouting
- Lining
- Cutting face
- Tail void grouting
- Hydraulic jacks

Simulation:
- Tail void grouting
- Hydraulic jacks

Model components:
- Back-up trailer
- Hydraulic jacks
- TBM
- Soil
- Lining
- TBM considering conicity and overcut

Motivation

Numerical model

Numerical Analyses

Aspects of optimization

Research perspectives
Construction process

Model components
- Fully & partially saturated soil
- Tail void grouting
- Face support
- TBM steering
- Simulation procedure

Simulation

- Tail void grouting
- Lining
- Cutting face
- Tail void grouting
- Hydraulic jacks
- Soil
- Lining
- TBM considering conicity and overcut

Numerical model
Modelling of partially saturated soils

Balance of momentum
\[\text{div}\sigma + \rho b = 0 \]

Balance of mass of gaseous phase
\[\frac{\partial \phi^g \rho^g}{\partial t} + \phi^g \rho^g \text{div} \mathbf{w}^g = 0 \]

Balance of mass of liquid phase
\[\frac{\partial \phi^l}{\partial t} + \phi^l \text{div} \mathbf{w}^l = 0 \]

DARCY – law for fluid phases
\[q^\beta = \frac{k^\beta}{\mu^\beta} (-\nabla p^\beta + \rho^\beta g) \]

Relative permeabilities \(k^g \) and \(k^l \) according to VAN GENCHTEN (1985)

Displacements \(\mathbf{u}_s \)

Gaseous & liquid pressure \(p^l, p^g \)

Degree of air saturation \(S^a \) [%]

Degree of water saturation \(S^w \) [%]

Motivation | Numerical model | Numerical Analyses | Aspects of optimization | Ongoing research
Numerical model

Modelling of tail void grouting

2-phase material with hydration-dependent stiffness and permeability

$t = 0, \nu_s \sim 0$

$t > 0, \nu_s > 0$

Accounts for interactions between grout and soil
Construction

Simulation

\[k_r = \frac{EA}{L} \]

\[k_t = \frac{EA}{L} \]
Construction

- Lining
- Hydraulic jacks
- TBM

Simulation

\[k_r = \frac{EA}{L} \]

\[k_t = \frac{EA}{L} \]

- Desired TBM driving path
- TBM reference point (control node)
- \(\beta \) - steering angle for the jack thrusts
- \(\Delta \) - steering angle for the jack thrusts
- \(\Delta \) - steering angle for the jack thrusts
Integration of geological, geotechnical and simulation model

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Numerical model</th>
<th>Numerical Analyses</th>
<th>Aspects of optimization</th>
<th>Ongoing research</th>
</tr>
</thead>
</table>

- Model components
- Fully & partially saturated soil
- Tail void grouting
- Face support
- TBM steering

Simulation procedure

Motivation

Numerical model

Numerical Analyses

Aspects of optimization

Ongoing research
Prognosis of settlements

![Graph showing vertical displacements over time for points A, B, and C during tunnel advance and consolidation.](image)

- **Tunnel advance**
- **Consolidation**

Vertical displacements (cm)

- **Point A**
- **Point B**
- **Point C**

Passing of face 0.5 days

Passing of tail 0.19 days

days (log.)

FE-model
Settlements
Pore pressure
Lining
Sensitivities

Motivation
Numerical model
Numerical Analyses
Aspects of optimization
Research perspectives
Computed excess pore pressures during the tunnel advance

Excess pore pressure (kN/m²)

TBM with taper

TBM without taper
Computed excess pore pressures during tunnel advance – Influence of filter cake

End of stopping phase

End of advancement phase

Motivation
Numerical model
Numerical Analyses
Aspects of optimization
Ongoing research
Computed lining pressure in the monitoring section

Measured lining pressure on a tunnel in Japan [HASHIMOTO 2002]

Motivation

Numerical model

Numerical Analyses

Aspects of optimization

Ongoing research
Geometry-related parameters: Influence of length of TBM

Influence on surface settlements
European Research Initiative TUNCONSTRUCT

Decision Support System for steering of TBM’s

- Support of tunnel excavation by means of information and process management system
- Integration of numerical simulation and Methods of Computational Intelligence in real time

Current state

Mid-term perspective

Engineer

Steering of TBM

Tunnel Drive

Measurements

Suggestions for driving parameters

Simulation

Knowledge-Basis

Steering data

Tunnel advance

Measured data

Steering data

IF... THEN...

Adjustment

Ongoing research