

Strategies for the rehabilitation of water distribution networks

Dr.-Ing. Robert Stein

1

Prof. Dr.-Ing. Stein & Partner GmbH S & P Consult GmbH

Thesis

- Sustainable management of water resources is depending on an sophisticated and strategic management of the water network infrastructure
- For a strategic management of the water network infrastructure a long-term forecast of rehabilitation needs and network development is mandatory
- Only by using a holistic network management system, identification and activation of saving potentials (water resources or finances) is achievable in the long run

Forecast of asset age development

4

S&P CONSULT

Forecast of rehabilitation priority development

5

Forecast of capital asset development

6

STATUS Water Scope of services

Operative Maintenance Planning

Strategy development and –analysis

Aging Models, Survival Functions and Forecast

Differentiated Defect- and Section Assessment

Data Management & Plausibility Analysis

STATUS Water Data Management & Plausibility Analysis

Plausibility analysis identifies missing and incorrect data and gives advice for solutions

STATUS Water Differentiated Defect- and Section Assessment

Strict thresholds as evaluation criteria are replaced by fuzzy-membershipfunctions reflecting the possible scope of decisions

STATUS Water Differentiated Defect- and Section Assessment

Strict thresholds as evaluation criteria are replaced by fuzzy-membershipfunctions reflecting the possible scope of decisions

Structural investigation (Damage Classification) Differentiated defect assessment - example

Structural investigation (Damage Classification) Differentiated defect assessment - example

Structural investigation (Damage Classification) Differentiated defect assessment - Fuzzy

Abolishment of the strict condition class limitations

Differentiated defect assessment - Fuzzy Abolishment of the strict condition class limitations

Differentiated defect assessment - Fuzzy Abolishment of the strict condition class limitations

Differentiated defect assessment - Fuzzy Abolishment of the strict condition class limitations

Including ancillary conditions into assessment (linked by fuzzy logic) gives the possibility to change to a risk-based (proactive) approach

Structural investigation (Damage Classification) Result – RISK REDUCTION

Differentiated Defect- and Section Assessment Section Assessment

Condition (Priority)

Criterion for the present function fulfilment

 \Rightarrow Rehabilitation priority

Consideration of the most severe single defect

Substance (Residual wear reserve)

Criterion for the remaining function fulfilment

⇒ Wear reserve/ remaining service life + Rehabilitation type

Consideration of distribution, extent and degree of the defects

Differentiated Defect- and Section Assessment Section Assessment

Substance (Residual wear reserve)

Criterion for the remaining function fulfilment

⇒ Wear reserve/ remaining service life + Rehabilitation type

Consideration of distribution, extent and degree of the defects

 Clustering of the network to determine of the survival functions

- Determination of the parameter for the Weibull distribution for the condition and substance classes according to the cluster attributes
- Determination of the survival functions for the related cluster as integral of the service life distribution

Example of survival functions based on a "bad" cluster

- Material is not sufficient as a criterion for describing a homogeneous cluster
- Comparison of two methods, including confidence intervals (95%)
- Many combination were examined

EXAMPLE:

First aging functions for the water network were derived based on the documented damages and experience of the operators and the network data. For a stable prognosis a long-term documentation of damage data in a defined form is necessary.

Survival functions - Water supply pipes

EXAMPLE:

Here we see a comparison with a typical German water network. In general the aging function show a higher service life.

One of the main causes for the difference, besides of the quality of installation (15%) or pipe materials (20%) can be seen in the stress and temporary high pressure caused by the non-continous water supply.

Strategy development and –analysis Risk assessments for strategies

Maximum likelihood

- pessimistic
- optimistic
- Monte-Carlo Simulation

Strategy development and –analysis Risk assessments for strategies

Risk assessments for strategies based on the aging behavior of a pipeline (eg a pipeline with typical service life of 80 years)?:

Maximum likelihood

- pessimistic
- optimistic
- Monte-Carlo Simulation

Strategy development and –analysis Prediction of the future network development

Predicting the future network development allows long-term strategic planning for increasing service level, reducing leakage and risk

S & P CONSULT GERMANY

Annual costs of

Repair Water losses

500

400

Assessment of water distribution pipes

Assessment of water distribution pipes Pro-active rehabilitation management

Situation 2005

Network failure rate	0.5	failures per km
 Network leakage rate 	0.5	m ³ per km and hour
 Deterioration rate 	2%	per year
 Replacement cost 	54,000	€ per km
Relining cost	28,000	€ per km
Repair cost	350	€ per failure
Variable part ofwater price	0.052	€ per m ³
 Inflation rate of water price 	8%	per year
water work	5%	per year

Strategy A

- 100 % replacement
- Linear increase of rehab rate from 0.2 (2005) to 1.0 (2020)
- Rehab needs beyond 2020 as forecast

Strategy B

- •1/3 replacement / 2/3 relining
- Linear increase of rehab rate from 0.3 (2005) to 1.5 (2020)
- Rehab needs beyond 2020 as forecast

Assessment of water distribution pipes Pro-active rehabilitation management

Decision criteria	Strategy A		Strategy B	
Relative to 2005	2020	2050	2020	2050
Network share rehabilitated	9%	54%	13.5%	58%
Average age	+11 yrs.	+4 yrs.	+9 yrs.	+3 yrs.
Average residual service life	-2 yrs.	+30 yrs.	-4 yrs.	+5 yrs.
Reduction of failure rate	4%	70%	4%	46%
Reduction of leakage rate	4%	70%	19%	75%
Years to break even	29		19	
Internal rate of return	7 %		11	%
Best strategy	??		??	

Thank you for attention!